Generalized Learning Graph Quantization
نویسندگان
چکیده
This contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (lgq) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform lgq and lgq2.1.
منابع مشابه
Learning Graph Quantization
This contribution extends learning vector quantization to the domain of graphs. For this, we first identify graphs with points in some orbifold, then derive a generalized differentiable intrinsic metric, and finally extend the update rule of LVQ for generalized differentiable distance metrics. First experiments indicate that the proposed approach can perform comparable to state-of-the-art metho...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملSupervised Neural Gas for Learning Vector Quantization
In this contribution we combine approaches the generalized leraning vector quantization (GLVQ) with the neighborhood orientented learning in the neural gas network (NG). In this way we obtain a supervised version of the NG what we call supervised NG (SNG). We show that the SNG is more robust than the GLVQ because the neighborhood learning avoids numerically instabilities as it may occur for com...
متن کاملFeature Transformation with Generalized Learning Vector Quantization for Hand-Written Chinese Character Recognition
In this paper, the generalized learning vector quantization (GLVQ) algorithm is applied to design a handwritten Chinese character recognition system. The system proposed herein consists of two modules, feature transformation and recognizer. The feature transformation module is designed to extract discriminative features to enhance the recognition performance. The initial feature transformation ...
متن کاملGeneralized boundary adaptation rule for minimizing rth power law distortion in high resolution quantization
A new generalized unsupervised competitive learning rule is introduced for adaptive scalar quantization. The rule, called generalized Boundary Adaptation Rule (BARr), minimizes r-th power law distortion Dr in the high resolution case. It is shown by simulations that a fast version of BARr outperforms generalized Lloyd I in minimizing D1 (mean absolute error) and D2 (mean squared error) distorti...
متن کامل